A Pictorial Introduction
to Components
In Scientific Computing

Once upon atime...

Input

‘ = E Output

Program

As Scientific Computing grew...

= A
= 2

Tried to ease the bottle neck

o=e

O »

A

SPMD was born.

SPMD worked.

Meanwhile, corporate computing
was growing in a different way

‘ |Input

=

Output

This created a whole new set of
problems — complexity

 Interoperability
across multiple

[L. languages
g 7z .
S L Interoperability
client across multiple
platforms

brows
e INCcremental

evolution of large
legacy systems
(esp. w/ multiple
3rd party software)

Component Technology
addresses these problems

So what’s a component ?7?

Implementation :
No Direct Access

Interface Access
Generated by Tools

Matching Connector :
Assigned by Framework
Hidden from User

10

1. Interoperability across
multiple languages

Language &
Platform
Independent
Interfaces

Automatically
generated
bindings to
working code

2. Interoperability Across Multiple

Platforms Imagine a company
migrates to a new

system, OS, etc.

What if the
source to
this one part
IS lost??7?

Transparent Distributed
Computing

Internet

3. Incremental Evolution With
Multiple 3rd party software

v 2.0

Now suppose you find this bug...

Good news: an upgrade available
Bad news: there’'s a dependency

v 2.0

Great News:
Solvable with Components

Great News:
Solvable with Components

-

.0

19

Why Components for Scientific
Computing — Complexity

ALPS | hypre

e Interoperability
across multiple
languages

e Interoperability
across multiple
platforms

o Incremental
evolution of large
legacy systems
(esp. w/ multiple
3rd party software)

The Model for Scientific
Component Programming

T
s

CCA

